Open Access Open Access  Restricted Access Subscription or Fee Access

Nanoparticle-Enhanced Phase Change Materials (NePCM) in Passive Cooling Systems to Improve Solar Panel Efficiency


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v18i1.24149

Abstract


Renewable energy sources play a pivotal role in global energy reserves, with solar energy standing out as a prominent option due to its cleanliness, abundance, and minimal emissions. The conversion of solar energy into electrical power is facilitated by Photovoltaic (PV) technology. However, the efficiency of PV systems could be improved by elevated temperatures, adversely affecting both efficiency and operational lifespan. In order to address this challenge, this study explores the integration of passive cooling systems by using Phase Change Materials (PCM), specifically focusing on the enhanced capabilities provided by nanoparticles, referred to as Nanoparticles Enhanced Phase Change Materials (NePCM). This investigation establishes a 50-watt peak (Wp) PV system as a passive cooling system, comparing its performance with and without PCM and NePCM. The study evaluates three materials: traditional paraffin PCM, NePCM-Al2O3, and NePCM-ZnO. Experimental results, obtained at an intensity of 1000 W/m2, are validated by using a PV-PCM panel temperature modeling approach. The findings indicate that NePCM-ZnO performs better in reducing the PV system's operating temperature, lowering it from 59.4 °C to 52.62 °C at 1000 W/m2 intensity. Compared to PV systems without passive cooling, the study reveals that implementing NePCM-ZnO as a passive coolant enhances maximum PV output power by 10.85 W and maximum PV efficiency by 3.08%. This improvement is attributed to the significant reduction in the maximum PV temperature by 6.78 °C, displaying the efficacy of NePCM-ZnO in optimizing the operational performance of PV systems.
Copyright © 2024 Praise Worthy Prize - All rights reserved.

Keywords


Passive Cooling System; NePCM; Efficiency; Solar Energy

Full Text:

PDF


References


M. M. Rahman, M. Hasanuzzaman, and N. A. Rahim, Effects of various parameters on PV-module power and efficiency, Energy Convers. Manag., vol. 103, pp. 348-358, 2015.
https://doi.org/10.1016/j.enconman.2015.06.067

S. Soltani, A. Kasaeian, H. Sarrafha, and D. Wen, An experimental investigation of a hybrid photovoltaic/thermoelectric system with nanofluid application, Sol. Energy, vol. 155, pp. 1033-1043, 2017.
https://doi.org/10.1016/j.solener.2017.06.069

S. D. Prasetyo, F. J. Regannanta, A. R. Birawa, and M. S. Alfaridzi, Techno-Economic Evaluation of Hybrid Photovoltaic-Wind Energy Systems for Indonesian Government Buildings, J. Sustain. Energy, vol. 2, no. 3, pp. 132-144, 2023.
https://doi.org/10.56578/jse020303

M. V. Dambhare, B. Butey, and S. V. Moharil, Solar photovoltaic technology: A review of different types of solar cells and its future trends, J. Phys. Conf. Ser., vol. 1913, no. 1, 2021.
https://doi.org/10.1088/1742-6596/1913/1/012053

Z. Arifin, Suyitno, S. Hadi, S. D. Prasetyo, and M. Hasbi, Promoting Effect of TiCl4 Pre-Coating Time on TiO2 Semiconductors on Double Layer Dye-Sensitized Solar Cell, J. Sustain. Energy, vol. 1, no. 1, pp. 18-26, 2022.
https://doi.org/10.56578/jse010103

S. D. Prasetyo, F. J. Regannanta, M. S. Mauludin, and Z. Arifin, Economic Feasibility of Solar-Powered Electric Vehicle Charging Stations: A Case Study in Ngawi, Indonesia, Mechatronics Intell. Transp. Syst., vol. 2, no. 4, pp. 201-210, 2023.
https://doi.org/10.56578/mits020402

F. Karimi, H. Xu, Z. Wang, J. Chen, and M. Yang, Experimental study of a concentrated PV/T system using linear Fresnel lens, Energy, vol. 123, pp. 402-412, 2017.
https://doi.org/10.1016/j.energy.2017.02.028

Z. Arifin, S. D. Prasetyo, B. A. Tribhuwana, D. D. D. P. Tjahjana, R. A. Rachmanto, and B. Kristiawan, Photovoltaic Performance Improvement with Phase Change Material Cooling Treatment, Int. J. Heat Technol., vol. 40, no. 4, pp. 953-960, 2022.
https://doi.org/10.18280/ijht.400412

S. D. Prasetyo, E. P. Budiana, A. R. Prabowo, and Z. Arifin, Modeling Finned Thermal Collector Construction Nanofluid-based Al 2 O 3 to Enhance Photovoltaic Performance, Civil Engineering Journal, vol. 9, no. 12, 2023.
https://doi.org/10.28991/CEJ-2023-09-12-03

A. Ibrahim, M. R. Ramadan, A. E. M. Khallaf, and M. Abdulhamid, A comprehensive study for Al2O3 nanofluid cooling effect on the electrical and thermal properties of polycrystalline solar panels in outdoor conditions, Environ. Sci. Pollut. Res., no. 0123456789, 2023.
https://doi.org/10.1007/s11356-023-25928-3

X. Liu, Y. Zhou, C. Q. Li, Y. Lin, W. Yang, and G. Zhang, Optimization of a new phase change material integrated photovoltaic/thermal panel with the active cooling technique using taguchi method, Energies, vol. 12, no. 6, pp. 1-22, 2019.
https://doi.org/10.3390/en12061022

D. H. Kumar, R. Krishna, M. D. Kumar, R. Pradhan, and M. Sreenivasan, Harvesting energy from moving vehicles with single-axis solar tracking assisted hybrid wind turbine, Mater. Today Proc., vol. 33, no. xxxx, pp. 326-332, 2020.
https://doi.org/10.1016/j.matpr.2020.04.116

Z. Arifin et al., The Effect of Adding an Air Concentrator on the Performance of a Photovoltaic Panel, SSRN Electron. J., 2022.
https://doi.org/10.2139/ssrn.4091320

D. Sato and N. Yamada, Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method, Renew. Sustain. Energy Rev., vol. 104, no. July 2018, pp. 151-166, 2019.
https://doi.org/10.1016/j.rser.2018.12.051

H. Asgharian and E. Baniasadi, A review on modeling and simulation of solar energy storage systems based on phase change materials, J. Energy Storage, vol. 21, no. July 2018, pp. 186-201, 2019.
https://doi.org/10.1016/j.est.2018.11.025

R. Thaib, S. Rizal, M. Riza, T. M. I. Mahlia, and T. A. Rizal, Beeswax as phase change material to improve solar panel's performance, IOP Conf. Ser. Mater. Sci. Eng., vol. 308, no. 1, pp. 5-11, 2018.
https://doi.org/10.1088/1757-899X/308/1/012024

T. Wongwuttanasatian, T. Sarikarin, and A. Suksri, Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink, Sol. Energy, vol. 195, no. November 2019, pp. 47-53, 2020.
https://doi.org/10.1016/j.solener.2019.11.053

R. Elarem et al., A comprehensive review of heat transfer intensification methods for latent heat storage units, Energy Storage, vol. 3, no. 1, 2021, doi: 10.1002/est2.127.
https://doi.org/10.1002/est2.127

R. Ahmed and K. A. I. Nabil, Computational analysis of phase change material and fins effects on enhancing PV/T panel performance, J. Mech. Sci. Technol., vol. 31, no. 6, pp. 3083-3090, 2017.
https://doi.org/10.1007/s12206-017-0552-z

P. Singh, V. Mudgal, S. Khanna, T. K. Mallick, and K. S. Reddy, Experimental investigation of solar photovoltaic panel integrated with phase change material and multiple conductivity-enhancing-containers, Energy, vol. 205, p. 118047, 2020.
https://doi.org/10.1016/j.energy.2020.118047

A. Sathishkumar and M. Cheralathan, Influence of thermal transport properties of NEPCM for cool thermal energy storage system, J. Therm. Anal. Calorim., vol. 147, no. 1, pp. 367-378, 2022.
https://doi.org/10.1007/s10973-020-10339-0

M. Shahabadi, B. Alshuraiaan, A. Abidi, O. Younis, M. Ghalambaz, and S. A. M. Mehryan, Transient melting flow of a NePCM comprising GNPs in a semi-elliptical latent heat thermal energy storage unit, Int. Commun. Heat Mass Transf., vol. 130, no. December 2021, p. 105815, 2022.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105815

Y. Wang et al., Preparation of polypeptide-metal complexes-coated Hosenkoside A and its inhibitory effect in cervical cancer, Int. J. Biol. Macromol., vol. 259, no. P1, p. 129177, 2024.
https://doi.org/10.1016/j.ijbiomac.2023.129177

A. NematpourKeshteli, M. Iasiello, G. Langella, and N. Bianco, Increasing melting and solidification performances of a phase change material-based flat plate solar collector equipped with metal foams, nanoparticles, and wavy wall-Y-shaped surface, Energy Convers. Manag., vol. 291, no. February, p. 117268, 2023.
https://doi.org/10.1016/j.enconman.2023.117268

S. Khanmohammadi, N. Azimi, E. Sharifzadeh, M. Rahimi, and P. Azimi, An experimental study to improve cooling on a hot plate using phase change materials and high-frequency ultrasound, J. Energy Storage, vol. 72, no. PA, p. 107930, 2023.
https://doi.org/10.1016/j.est.2023.107930

M. Fteiti, M. Ghalambaz, M. Sheremet, and M. Ghalambaz, The impact of random porosity distribution on the composite metal foam-phase change heat transfer for thermal energy storage, J. Energy Storage, vol. 60, no. December 2022, p. 106586, 2023.
https://doi.org/10.1016/j.est.2022.106586

M. M. Islam, M. Hasanuzzaman, N. A. Rahim, A. K. Pandey, M. Rawa, and L. Kumar, Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach, Renew. Energy, vol. 172, pp. 71-87, 2021.
https://doi.org/10.1016/j.renene.2021.02.169

I. Zarma, M. Ahmed, and S. Ookawara, Enhancing the performance of concentrator photovoltaic systems using Nanoparticle-phase change material heat sinks, Energy Convers. Manag., vol. 179, no. September 2018, pp. 229-242, 2019.
https://doi.org/10.1016/j.enconman.2018.10.055

S. A. Nada, D. H. El-Nagar, and H. M. S. Hussein, Improving the thermal regulation and efficiency enhancement of PCM-Integrated PV modules using nano particles, Energy Convers. Manag., vol. 166, no. April, pp. 735-743, 2018.
https://doi.org/10.1016/j.enconman.2018.04.035

Z. Arifin et al., ScienceDirect The application of TiO 2 nanofluids in photovoltaic thermal collector systems, Energy Reports, vol. 8, no. May, pp. 1371-1380, 2022.
https://doi.org/10.1016/j.egyr.2022.08.070

M. Jafaryar and M. Sheikholeslami, Simulation for charging of phase change material in existence of nanomaterial within solar energy storage system, J. Energy Storage, vol. 68, no. January, p. 107864, 2023.
https://doi.org/10.1016/j.est.2023.107864

S. Sharma, L. Micheli, W. Chang, A. A. Tahir, K. S. Reddy, and T. K. Mallick, Nano-enhanced Phase Change Material for thermal management of BICPV, Appl. Energy, vol. 208, no. May 2017, pp. 719-733, 2017.
https://doi.org/10.1016/j.apenergy.2017.09.076

H. W. Chiam, W. H. Azmi, N. M. Adam, and M. K. A. M. Ariffin, Numerical study of nanofluid heat transfer for different tube geometries - A comprehensive review on performance, Int. Commun. Heat Mass Transf., vol. 86, pp. 60-70, 2017.
https://doi.org/10.1016/j.icheatmasstransfer.2017.05.019

A. Albojamal and K. Vafai, Analysis of single phase, discrete and mixture models, in predicting nanofluid transport, Int. J. Heat Mass Transf., vol. 114, pp. 225-237, 2017.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.030

H. E. Abdelrahman, M. H. Wahba, H. A. Refaey, M. Moawad, and N. S. Berbish, Performance enhancement of photovoltaic cells by changing configuration and using PCM (RT35HC) with nanoparticles Al2O3, Sol. Energy, vol. 177, no. October 2018, pp. 665-671, 2019.
https://doi.org/10.1016/j.solener.2018.11.022

H. Nazir et al., Recent developments in phase change materials for energy storage applications: A review, Int. J. Heat Mass Transf., vol. 129, pp. 491-523, 2019.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

M. Shakeel, A. K. Pandey, and N. Abd, Advancements in the development of TiO 2 photoanodes and its fabrication methods for dye-sensitized solar cell ( DSSC ) applications . A review, Renew. Sustain. Energy Rev., vol. 77, no. April, pp. 89-108, 2017.
https://doi.org/10.1016/j.rser.2017.03.129

H. M. Ali, H. Babar, T. R. Shah, M. U. Sajid, M. A. Qasim, and S. Javed, Preparation techniques of TiO2 nanofluids and challenges: A review, Appl. Sci., vol. 8, no. 4, 2018.
https://doi.org/10.3390/app8040587

A. R. I. Ali and B. Salam, A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application, SN Appl. Sci., vol. 2, no. 10, p. 1636, 2020.
https://doi.org/10.1007/s42452-020-03427-1

M. Sayyar, R. R. Weerasiri, P. Soroushian, and J. Lu, Experimental and numerical study of shape-stable phase-change nanocomposite toward energy-efficient building constructions, Energy Build., vol. 75, pp. 249-255, 2014.
https://doi.org/10.1016/j.enbuild.2014.02.018

L. Han, X. Zhang, J. Ji, and K. Ma, Research progress on the influence of nano-additives on phase change materials, J. Energy Storage, vol. 55, no. PD, p. 105807, 2022.
https://doi.org/10.1016/j.est.2022.105807

A. H. A. Al-Waeli et al., Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study, Energy Convers. Manag., vol. 151, no. September, pp. 693-708, 2017.
https://doi.org/10.1016/j.enconman.2017.09.032

S. Bhattacharjee and S. Acharya, Performative analysis of an eccentric solar-wind combined system for steady power yield, Energy Convers. Manag., vol. 108, pp. 219-232, 2016.
https://doi.org/10.1016/j.enconman.2015.11.023

S. Ramakrishnan, X. Wang, J. Sanjayan, and J. Wilson, Heat Transfer Performance Enhancement of Paraffin/Expanded Perlite Phase Change Composites with Graphene Nano-platelets, Energy Procedia, vol. 105, pp. 4866-4871, 2017.
https://doi.org/10.1016/j.egypro.2017.03.964

L. Colla, L. Fedele, S. Mancin, L. Danza, and O. Manca, Nano-PCMs for enhanced energy storage and passive cooling applications, Appl. Therm. Eng., vol. 110, pp. 584-589, 2017.
https://doi.org/10.1016/j.applthermaleng.2016.03.161

A. T. Pise, A. V. Waghmare, and V. G. Talandage, Heat Transfer Enhancement by Using Nanomaterial in Phase Change Material for Latent Heat Thermal Energy Storage System, Asian J. Eng. Appl. Technol., vol. 2, no. 2, pp. 52-57, 2013.
https://doi.org/10.51983/ajeat-2013.2.2.667

I. B. Karki, Effect of Temperature on the I-V Characteristics of a Polycrystalline Solar Cell, J. Nepal Phys. Soc., vol. 3, no. 1, p. 35, 2016.
https://doi.org/10.3126/jnphyssoc.v3i1.14440

E. A. Setiawan, A. Setiawan, and D. Siregar, Analysis on solar panel performance and PV-inverter configuration for tropical region, J. Therm. Eng., vol. 3, no. 3, pp. 1259-1270, 2017.
https://doi.org/10.18186/journal-of-thermal-engineering.323392


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize