Open Access Open Access  Restricted Access Subscription or Fee Access

Examination of Channel Angles Influence on the Cooling Performance of Air-cooled Thermal Management System of Li-Ion Battery


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v16i4.22239

Abstract


Air-cooled battery thermal management is the most frequent alternative for keeping the battery pack in hybrid electric vehicles and electric vehicles at the proper temperature. In the present study, the flow and thermal distribution in regular Z and U-type flow Battery Thermal Management Systems (BTMS) were optimized by modifying their inlet and outlet channel angles. The cooling performance of the systems was determined based on their flow and thermal fields using a Computational Fluid Dynamics (CFD) approach. The results show that the conventional Z-type flow cooling performance is improved by changing the input channel angle to 150° and the exit channel angle to 120°. The maximum temperature is reduced by 1.6 °C, and the maximum temperature difference is reduced by 3.7 °C, while the power usage is cut by 29%. By keeping the inlet channel angle perpendicular and changing the outlet channel angle to 135°, the cooling effectiveness of the conventional U-type flow BTMS is also increased. The maximum temperature drops by 0.4 °C, the maximum cell temperature difference drops by 1 °C, and its power consumption drops by 11%. The overall results suggest that inlet and outlet channel angles play a significant role in optimization and depend strongly on the flow type of BTMS.
Copyright © 2022 Praise Worthy Prize - All rights reserved.

Keywords


Air-Cooling; Battery Thermal Management System; Channel Angle; Electric Vehicles; Li-Ion Battery

Full Text:

PDF


References


H. Behi, M. Behi, D. Karimi, J. Jaguemont, M. Ghanbarpour, M. Behnia, … J. Van Mierlo, Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications. Applied Thermal Engineering, 116240, 2020.
https://doi.org/10.1016/j.applthermaleng.2020.116240

L. H. Saw, Y. Ye, A. A. O. Tay, W. T. Chong, S. H. Kuan, M. C. Yew, Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Applied Energy, 177, 783-792, 2016.
https://doi.org/10.1016/j.apenergy.2016.05.122

D. Dan, C. Yao, Y. Zhang, H. Zhang, Z. Zeng, X. Xu, Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 114183, 2019.
https://doi.org/10.1016/j.applthermaleng.2019.114183

W. Li, M. Xiao, X. Peng, A. Garg, L. Gao, A surrogate thermal modeling and parametric optimization of battery pack with air cooling for EVs. Applied Thermal Engineering. 147, 90-100, 2019.
https://doi.org/10.1016/j.applthermaleng.2018.10.060

D. Erb, S. Kumar, E. Carlson, I. Ehrenberg, S. Sarma, Analytical methods for determining the effects of lithium-ion cell size in aligned air-cooled battery packs. Journal of Energy Storage. 10, 39-47, 2017.
https://doi.org/10.1016/j.est.2016.12.003

R. Jilte, R. Kumar, Numerical investigation on cooling performance of Li-ion battery thermal management system at high galvanostatic discharge. EngSciTechnolInt J-Jestech.21, 957-969, 2018.
https://doi.org/10.1016/j.jestch.2018.07.015

R. Jilte, R. Kumar, L. Ma, Thermal performance of a novel confined flow Li-ion battery module. Applied Thermal Engineering. 146,1-11, 2019
https://doi.org/10.1016/j.applthermaleng.2018.09.099

Z. Qian, Y. Li, Z. Rao, Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Conversion and Management, 126, 622-631, 2016.
https://doi.org/10.1016/j.enconman.2016.08.063

S. Basu, K. S. Hariharan, S. M. Kolake, T. Song, D. K. Sohn, T. Yeo, Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Applied Energy, 181, 1-13, 2016.
https://doi.org/10.1016/j.apenergy.2016.08.049

F. Wu, Z. Rao, The lattice Boltzmann investigation of natural convection for nanofluid based battery thermal management. Applied Thermal Engineering, 115, 659-669, 2017.
https://doi.org/10.1016/j.applthermaleng.2016.12.139

M. S. Patil, J. H. Seo, S. Panchal, S.-W. Jee, M.-Y. Lee, Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate. International Journal of Heat and Mass Transfer, 155, 119728, 2020.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119728

D. Dan, C. Yao, Y. Zhang, H. Zhang, Z. Zeng, X. Xu, Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 114183, 2019.
https://doi.org/10.1016/j.applthermaleng.2019.114183

X. Ye, Y. Zhao, Z. Quan, Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA). Applied Thermal Engineering, 130, 74-82, 2018.
https://doi.org/10.1016/j.applthermaleng.2017.10.141

Z. Ling, J. Chen, X. Fang, Z. Zhang, T. Xu, X. Gao, S. Wang, Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Applied Energy, 121, 104-113, 2014.
https://doi.org/10.1016/j.apenergy.2014.01.075

N. Javani, I. Dincer, G. F. Naterer, G. L. Rohrauer, Modeling of passive thermal management for electric vehicle battery packs with PCM between cells. Applied Thermal Engineering, 73(1), 307-316, 2014.
https://doi.org/10.1016/j.applthermaleng.2014.07.037

N. Javani, I. Dincer, G. F. Naterer, B. S. Yilbas, Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. International Journal of Heat and Mass Transfer, 72, 690-703, 2014.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.076

K. Chen, W. Wu, F. Yuan, L. Chen, S. Wang, Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern. Energy, 167, 781-790, 2019.
https://doi.org/10.1016/j.energy.2018.11.011

K. Chen, J. Hou, X. Wu, Y. Chen, M. Song, S. Wang, Design of flow pattern in air-cooled battery thermal management system. International Journal of Energy Research, 45(6), 9541-9554, 2021.
https://doi.org/10.1002/er.6480

S. Hong, X. Zhang, K. Chen, S. Wang, Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent. International Journal of Heat and Mass Transfer, 116, 1204-1212, 2018.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.092

K. Chen, M. Song, W. Wei, S. Wang, Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement. International Journal of Heat and Mass Transfer, 132, 309-321, 2019.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.024

K. Chen, Y. Chen, Y. She, M. Song, S. Wang, L. Chen, Construction of effective symmetrical air-cooled system for battery thermal management. Applied Thermal Engineering, 114679, 2019.
https://doi.org/10.1016/j.applthermaleng.2019.114679

O.M. Oyewola, A.A. Awonusi, O.S. Ismail, Performance Improvement of Air-cooled Battery Thermal Management System using Sink of Different Pin-Fin Shapes. Emerging Science Journal, 6(4), 851-865, 2022.
https://doi.org/10.28991/ESJ-2022-06-04-013

M. Wang, S. Teng, H. Xi, Y. Li, Cooling performance optimization of air-cooled battery thermal management system. Applied Thermal Engineering, 195. 117242, 2021.
https://doi.org/10.1016/j.applthermaleng.2021.117242

F. Zhang, P. Liu, Y. He, S. Li, Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle. Journal of Energy Storage, 52 (A), 104678, 2022.
https://doi.org/10.1016/j.est.2022.104678

L. Fan, J. M. Khodadadi, A. A. Pesaran, A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. Journal of Power Sources, 238, 301-312, 2013.
https://doi.org/10.1016/j.jpowsour.2013.03.050

Pao-la-or, P., Somphong, N., Tab Design for Thermal Reduction in Pouch Lithium-Ion Battery by Using Finite Element Method, (2021) International Review on Modelling and Simulations (IREMOS), 14 (6), pp. 485-495.
https://doi.org/10.15866/iremos.v14i6.21298

J. Xie, Z. Ge, M. Zang, S. Wang, Structural optimization of lithium-ion battery pack with forced air cooling system. Applied Thermal Engineering, 126, 583-593, 2017.
https://doi.org/10.1016/j.applthermaleng.2017.07.143

M. Wang, S. Teng, H. Xi, Y. Li, Cooling performance optimization of air-cooled battery thermal management system. Applied Thermal Engineering, 195, 117242, 2021.
https://doi.org/10.1016/j.applthermaleng.2021.117242

H. Fathabadi, A novel design including cooling media for Lithium-ion batteries pack used in hybrid and electric vehicles. Journal of Power Sources, 245, 495-500, 2014.
https://doi.org/10.1016/j.jpowsour.2013.06.160

ANSYS, Introduction to Ansys Fluent (Lecture 10-Transient Flow Modeling). ANSYS Inc. Proprietary, 2020 (accessed on November 2021). Available online:
https://imechanica.org/files/fluent_13.0_lecture10-transient.pdf

Limam, L., Hatanaka, K., Gonzalez-Llorente, J., Chihiro, M., Chikashi, T., Okuyama, K., Space Environment Evaluation Test of Solid-State-Ceramic Battery Advanced Energy Storage Under Vacuum and Thermal Vacuum, (2020) International Review of Aerospace Engineering (IREASE), 13 (2), pp. 68-79.
https://doi.org/10.15866/irease.v13i2.18582


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize