Open Access Open Access  Restricted Access Subscription or Fee Access

Analysis of Charcoal Gasification on a Downdraft Fixed Bed Gasifier by CFD Modeling


(*) Corresponding author


Authors' affiliations


DOI: https://doi.org/10.15866/ireme.v9i4.6283

Abstract


Gasification is a remarkable alternative to produce either thermal or electrical energy using renewable resources like biomass. Several developments have been performed in order to increase the energy value of syngas resulting from biomass gasification; nevertheless, the complexity of the reactions occurring inside the reactors and the differences of the raw materials employed have created the necessity of analyzing the internal performance of the equipment. This work aims to simulate the thermal performance of a lab-scale downdraft fixed bed gasifier by means of a Euler-Euler multiphase Computation Fluid Dynamics (CFD) model, and validate it in accordance with experimental data of charcoal gasification. The model, built on a 2D axis-symmetric domain, comprises heat, mass transfer equations, and homogeneous and solid-gas heterogeneous reactions. Mesh quality was evaluated in accordance with squish, skewness and aspect ratio criteria. The composition of the syngas varied with the airflow rate; however, CO content was between 24 and 27%, whereas CO2 was in the range of 4.4 and 2.8%. The higher the CO content, the greater the energy value of the syngas. Small prediction errors, obtained after comparing predicted CO and CO2 content in syngas with experimental data indicated good accuracy of the CFD model; nonetheless, further research is needed in order to decrease differences on the temperature distribution along the reactor.
Copyright © 2015 Praise Worthy Prize - All rights reserved.

Keywords


Biomass; Charcoal; CFD Modeling; Gasification; Renewable Energy

Full Text:

PDF


References


L. Nunes, J. Matias y J. Castalao, «Mixed biomass pellets from thermal energy production: A review of combustion models,» Applied Energy, vol. 127, pp. 135-140, 2014.
http://dx.doi.org/10.1016/j.apenergy.2014.04.042

REN21, «Renewables 2013 Global Status Report,» 2013.

R. Saidur, E. Abdelaziz, A. Demirbas, M. Hossain y S. Mekhilef, «A review on biomass as a fuel for boilers,» Renewable and Sustainable Energy Reviews, vol. 15, pp. 2262-2289, 2011.
http://dx.doi.org/10.1016/j.rser.2011.02.015

C. Telmo y J. Lousada, «Heating values of wood pellets from different species,» Biomass and Bioenergy, vol. 35, pp. 2634-2639, 2011.
http://dx.doi.org/10.1016/j.biombioe.2011.02.043

S. V. Vassilev, D. Baxter, L. K. Andersen y C. G. Vassileva, «An overview of the chemical composition of biomass,» Fuel, pp. 913-933, 2010.
http://dx.doi.org/10.1016/j.fuel.2009.10.022

S. V. Vassilev, D. Baxter, L. K. Andersen, C. G. vssileva y T. J. Morgan, «An overview of the organic and inorganic phase composition of biomass,» Fuel, vol. 94, pp. 1-33, 2012.
http://dx.doi.org/10.1016/j.fuel.2011.09.030

E. Graciosa Pereira, J. Nogueira da Silva, J. L. De Oliveira y C. S. Machado, «Sustainable energy: A review of gasification technologies,» Renewable and Sustainable Energy Reviews, vol. 16, pp. 4753 - 4762, 2012.
http://dx.doi.org/10.1016/j.rser.2012.04.023

J. Ahrenfeldt, T. P. Thomsen, U. Henriksen y L. R. Clausen, «Biomass gasification cogeneration - A review of state of the art technology and near future perspectives,» Applied Thermal Engineering, vol. 50, pp. 1407 - 1417, 2013.
http://dx.doi.org/10.1016/j.applthermaleng.2011.12.040

Z. A. B. Z. Alauddin, P. Lahijani, M. Mohammadi y A. R. Mohamed, «Gasification of lignocellulosic biomass in fluidized beds for a renewable energy development,» Renewable and Energy Sustainable Energy Reviews, vol. 14, pp. 2852 - 2862, 2010.
http://dx.doi.org/10.1016/j.rser.2010.07.026

M. Puig-Arnavat, J. C. Bruno y A. Coronas, «Review and analysis of biomass gasification models,» Renewable and Sustainable Energy Reviews, vol. 14, pp. 2841 - 2851, 2010.
http://dx.doi.org/10.1016/j.rser.2010.07.030

Q. Xue y R. Fox, «Multi-fluid CFD modeling of biomass gasification in polydisperse fluidized-bed gasifiers,» Powder Technology, vol. 254, pp. 187-198, 2014.
http://dx.doi.org/10.1016/j.powtec.2014.01.025

A. Slezak, J. M. Kuhlman, L. J. Shadle, J. Spenik y S. Shi, «CFD simulaton of entrained-flow coal gasification: Coal particle density/size fraction effects,» Powder Technology, vol. 203, pp. 98-108, 2010.
http://dx.doi.org/10.1016/j.powtec.2010.03.029

C. Chen, M. Horio y T. Kojima, «Numerical simulation of entrained flow of coal gasifiers. Part II: Effects of operating conditions on gasifier performance,» Chemical Engineering Science, vol. 55, pp. 3875-3883, 2000.
http://dx.doi.org/10.1016/s0009-2509(00)00031-2

C. Chen, M. Horio y T. Kojima, «Numerical simulation of entrained flow coal gasifiers. Part I: modeling of coal gasification in an entrained flow gasifier,» Chemical Engineering Science, vol. 55, pp. 3861-3874, 2000.
http://dx.doi.org/10.1016/s0009-2509(00)00030-0

C. Chen, M. Horio y T. Kojima , «Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers,» Fuel, vol. 80, pp. 1513-1523, 2001.
http://dx.doi.org/10.1016/s0016-2361(01)00013-8

N. Syred, K. Kurniawan, T. Griffiths, T. Gralton y R. Ray, «Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes,» Fuel, vol. 86, pp. 2221-2231, 2007.
http://dx.doi.org/10.1016/j.fuel.2007.05.060

I. Janajreh y M. Al Shrah, «Numerical and experimental investigation of downdraft gasification of wood chips,» Energy Conversion and Management, vol. 65, pp. 783-792, 2013.
http://dx.doi.org/10.1016/j.enconman.2012.03.009

C. A. Forero Núñez, J. Jochum y F. E. Sierra Vargas, «Characterization and feasibility of biomass fuel pellets made of Colmobian timber, coconut and oil palm residues, regarding European standards,» Environmental Biotechnology, vol. 8, nº 2, pp. 67-76, 2012.

American Society for Testing and Materials, «Standard Test Method for Moisture Analysis of particulate Wood Fuels,» West Conshohocken, 2005.

American Society for Testing and Materials, «Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels,» West Conshohocken, PA,, 2006.

American Society for Testing and Materials, «Standard Test Method for Ash in Biomass,» West Conshohocken, 2005.

American Socienty for Testing and Materials, «Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis of Coal and Coke,» West Conshohocken, 2013.
http://dx.doi.org/10.1520/d5373-13

American Society for Testing and Materials, «Standard Test Method for Sulfur in the Anlaysis Sample of Coal and Coke Using High Temperature Tube Furnace Combustion,» West Conshohocken, 2005.
http://dx.doi.org/10.1520/d4239-13

I. Obernberger y G. Thek, «Physical characterisation and chemical composition of densifed biomass fuel with regard to their combustion behaviour,» Biomass and Bioenergy, vol. 27, pp. 653 - 669, 2004.
http://dx.doi.org/10.1016/j.biombioe.2003.07.006

C. A. Forero-Nuñez, J. U. Castellanos-Contreras y F. E. Sierra Vargas, «Control de una planta prototipo de gasificación de biomasa mediante redes neuronales,» Ingeniería Mecánica Tecnología y Desarrollo, vol. 4, pp. 161-168, 2013. http://www.redalyc.org/articulo.oa?id=76828977002

S. Ramirez, F. E. Sierra-Vargas y C. A. Guerrero, «Gasification fromwaste organic materials,» Ingeniería e Investigación, vol. 31, nº 3, pp. 17-25, 2011. http://revistas.unal.edu.co/index.php/ingeinv/article/view/26374

A. Guardo, M. Coussirat, M. Larrayoz, F. Recasens y E. Egusquiza, «Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds,» Chemical Engineering Science, vol. 60, pp. 1733-1742, 2005.
http://dx.doi.org/10.1016/j.ces.2004.10.034

H. Nabil, «Simulation numérique de la gazeification: interaction (chimie-turbulencelors) de la phase d´oxydation partielle,» Nantes, 2009.http://dlibrary.univ-boumerdes.dz:8080/jspui/handle/123456789/1085

C. Mandl, I. Obernberger y F. Biedermann, «Modelling of an updraft fixed-bed gasifier operated with softwood pellets,» Fuel, vol. 89, pp. 3795 - 3806, 2010.
http://dx.doi.org/10.1016/j.fuel.2010.07.014

Z. Deng, R. Xiao, B. Jin, H. Huang, L. Shen, Q. Song y Q. Li, «Computational Fluid dynamics Modeling of Coal Gasification in a Pressurized Spout-Fluid Bed,» Energy & Fuels, vol. 22, pp. 1560 - 1569, 2008.
http://dx.doi.org/10.1021/ef7007437

M. Sudiro, M. Pellizzaro, F. Bezzo y A. Bertucco, «Simulated moving bed technology applied to coal gasification,» Chemical Engineering Research and Design, vol. 88, pp. 465-475, 2010.
http://dx.doi.org/10.1016/j.cherd.2009.09.001

A. Gómez-Barea y B. Leckner, «Modeling of biomass gasification in lfuidized bed,» Progess in Energy and Combustion Science, vol. 36, pp. 444-509, 2010.
http://dx.doi.org/10.1016/j.pecs.2009.12.002

S. Nagpal, T. Sarkar y P. Sen, «Simulation of petcoke gasification in slagging moving bed reactors,» Fuel processing technology, vol. 86, pp. 617-640, 2005.
http://dx.doi.org/10.1016/j.fuproc.2004.05.012

C. Syred, A. Griffiths, N. Syred, D. Beedie y D. James, «A clean, efficient system for producing Charcoal, Heat and Power (CHaP),» Fuel, vol. 85, pp. 1566-1578, 2006.
http://dx.doi.org/10.1016/j.fuel.2005.10.026

J. MacPhee, J. Gransden, L. Giroux y J. Price, «Possible CO2 mitigation via addition of charcoal to coking coal blends,» Fuel Processing Technology, vol. 90, pp. 16-20, 2009.
http://dx.doi.org/10.1016/j.fuproc.2008.07.007

C. Erlich y T. H. Fransson, «Downdraft gasification of pellets made of wood, palm oil residues bagasse: Experimental study,» Applied Energy, vol. 88, pp. 899-908, 2011.
http://dx.doi.org/10.1016/j.apenergy.2010.08.028

M. Simone, F. Barontini, C. Nicolella y L. Tognotti, «Gasification of pelletized biomass in a pilot scale downdraft gasifier,» Bioresource Technology, vol. 116, pp. 403-412, 2012.
http://dx.doi.org/10.1016/j.biortech.2012.03.119


Refbacks

  • There are currently no refbacks.



Please send any question about this web site to info@praiseworthyprize.com
Copyright © 2005-2024 Praise Worthy Prize